## MAT 2379-Spring 2011 <br> Assignment 4 : Solutions

5.3 (3 points) This question deals with the binomial distribution with $n=5, p=0.39$. From Table 3.7, $P(Y=y)=\binom{n}{y} p^{y}(1-p)^{n-y}, y=0,1, \ldots, n$
a) (i) $P(Y=0)=0.08$
(ii) $P(Y=1)=0.27$
(iii) $P(Y=2)=0.35$
(iv) $P(Y=3)=0.22$
(v) $P(Y=4)=0.07$
(vi) $P(Y=5)=0.01$
5.15 (4 points) $Y$ has a normal with mean $\mu=176, \sigma=30$
(a)

$$
\begin{aligned}
P(166 \leq Y \leq 186)= & P\left(\frac{166-176}{30} \leq Z \leq \frac{186-176}{30}\right) \\
= & P(-0.33 \leq Z \leq 0.33) \\
= & 0.6293-0.3707=0.2586
\end{aligned}
$$

(b) Here we are concerned with the sampling distribution of $\bar{Y}_{9}$ which is normal with mean 176 and standard deviation $\sigma_{\bar{Y}}=\frac{\sigma}{\sqrt{9}}=30 / 3=10$

$$
\begin{array}{cl}
P(166 \leq \bar{Y} \leq 186)= & P\left(\frac{166-176}{10} \leq Z \leq \frac{186-176}{10}\right) \\
= & P(-1 \leq Z \leq 1)=0.68
\end{array}
$$

(c) This question is just a rephrasing of the question in part (b) and hence the probability is 0.68
$5.22\left(2\right.$ points) Here $\bar{Y}_{n}$ has a normal distribution with mean 50 and $\sigma_{\bar{Y}}=$ $\frac{\sigma}{\sqrt{n}}=\frac{9}{\sqrt{n}}$. An area of 0.68 corresponds to $\pm 1$ deviation on the Z-scale. Hence,
$z=1=\frac{51.10-50}{\frac{9}{\sqrt{n}}}=\frac{1.1 \sqrt{n}}{9}$. Hence $n=36$.
5.42 (2 points) $Y$ has a normal with mean $\mu=88, \sigma=7$.

Here we are concerned with the sampling distribution of $\bar{Y}_{5}$ which is normal with mean 88 and standard deviation $\sigma_{\bar{Y}}=\frac{7}{\sqrt{5}}=3.13$
$P\left(\bar{Y}_{5} \geq 90\right)=P\left(Z \geq \frac{90-88}{3.13}\right)=P(Z \geq 0.64)=1-0.7389=0.2611$
5.44 ( 6 points) $Y$ has a normal with mean $\mu=69.7, \sigma=2.8$
(a) $P(Y \geq 72)=P\left(Z \geq \frac{72-69.7}{2.8}\right)=P(Z \geq 0.82)=1-0.8939=0.1061$
(b) (i) Using the binomial distribution,
$P($ both are $>72)=0.2061^{2}=0.0425$
(ii) $n=2 ; \sigma_{\bar{Y}}=\frac{2.8}{\sqrt{2}}=1.9799$
$z=\frac{72-69.7}{1.98}=1.1616$
$P\left(\bar{Y}_{2} \geq 72\right)=1-0.877=0.123$
5.47 (4 points) We are concerned with the distribution of $\hat{p}$ which is determined from the binomial with $n=20, p=0.2$
a) $P(\hat{p}=p)=P(X=4)={ }_{20} C_{4} p^{4}(1-p)^{16}=4845(.2)^{4}(.8)^{16}=0.2182$
b) The event $p-0.05 \leq \hat{p} \leq p+0.05$ is equivalent to $0.15 \leq \hat{p} \leq 0.25$

That is , $3 \leq X \leq 5$.
We calculate using the binomial distribution

$$
\begin{aligned}
& P(X=3)+P(X=4)+P(X=5) \\
= & 0.20536+0.21820+0.17456 \\
= & 0.5981
\end{aligned}
$$

Total $=21$ points

